Dichotomy and infinite combinatorics : the theorems of Steinhaus and Ostrowski

نویسندگان

  • N. H. BINGHAM
  • A. J. OSTASZEWSKI
چکیده

We define combinatorial principles which unify and extend the classical results of Steinhaus and Piccard on the existence of interior points in the distance set. Thus the measure and category versions are derived from one topological theorem on interior points applied to the usual topology and the density topology on the line. Likewise we unify the subgroup theorem by reference to a Ramsey property. A combinatorial form of Ostrowski’s theorem (that a bounded additive function is linear) permits the deduction of both the measure and category automatic continuity theorems for additive functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innite Combinatorics and the theorems of Steinhaus and Ostrowski

We de…ne combinatorial principles which unify and extend the classical results of Steinhaus and Piccard on the existence of interior points in the distance set. Thus the measure and category versions are derived from one topological theorem on interior points applied to the usual topology and the density topology on the line. Likewise we unify the subgroup theorem by reference to a Ramsey prope...

متن کامل

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

Uniform generalized Steinhaus graphs

In [1] it is shown that the first order theory of almost all generalized Steinhaus graphs is identical to the first order theory of almost all where each generalized Steinhaus graph is given the same probability. A natural probability measure on generalized Steinhaus graphs is obtained by independently assigning a probability of p for each entry in the generating string of the graph. With this ...

متن کامل

On the Connection between Gaps in Power Series and the Roots of Their Partial Sums

be a power series with the radius of convergence 1. We say that it has Ostrowski gaps p if there exists a pi, such that | an \ < pn for mk á « Û «*. It has infinite Ostrowski gaps p (pp there corresponds a pair of infinite sequences mk and nk (depending on p') with mk<nk and lim nk/mk= « such that | a» | ...

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010